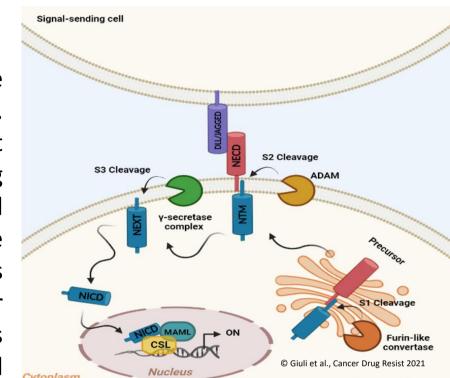


FPN: 297P Abstract #4237


Prognostic and predictive impact of NOTCH1 in early breast cancer

¹J. Engel, ¹V. Wieder, ²T. Lantzsch, ³V. Hanf ⁴C. Uleer, ⁵S. Peschel, ⁶J. John, ⁷M. Poehler, ⁸J. Buchmann, ⁹E. Weigert, ¹⁰K. Buerrig, ^{1,11}E. - J. Kantelhardt, ¹C. Thomssen, ¹M. Vetter

¹Dept. of Gynaecology Martin Luther University Halle-Wittenberg, Halle (Saale); ²Germany; Dept. of Gynaecology Hospital St. Elisabeth & St. Barbara, Halle (Saale); ³Dept. of Gynaecology, Nathanstift, Klinikum Fürth; ⁴Gynaecological Practice, Hildesheim; ⁵Dept. of Gynaecology St. Bernward Hospital, Hildesheim; ⁶Dept. of Gynaecology Klinikum Hildesheim; ⁷Dept. of Gynaecology Hospital Goslar, ⁸Institute of Pathology Hospital Martha-Maria, Halle (Saale); ⁹Institute of Pathology Klinikum Fürth, Fürth; ¹⁰Institute of Pathology Klinikum Hildesheim, Hildesheim; ¹¹Institute of Epidemiology, Biometry and Informatics Martin Luther University Halle-Wittenberg, all in Germany, in behalf of the PiA-study group

Background

Systemic therapy plays a major part in the cure of patients with early breast cancer. more individualized treatment are required with increasing potentially harmful overtreatment. Therefore, biomarkers are needed and the Notch-signalling pathway is considered to be suitable as a prognostic or predictive marker in breast cancer as it is involved in proliferation, invasiveness and chemotherapy resistance¹.

Pts. with NACT excluded

n=200

Patients and Methods

- Prospective, multicenter cohort (Prognostic Assessment in Routine Application (PiA), 2009-2011, NCT01592825) of 1,270 breast cancer patients, median follow-up of 60 months
- Determination of relative NOTCH1-mRNA expression in tumour tissue (n=414) by quantitative RT-PCR
- **Primary objective:** Evaluation of NOTCH1-mRNA expression and its association with patients and tumours characteristics
- Secondary obiectives: Association of NOTCH1-mRNA expression with recurrencefree interval (RFI), overall and survival predictive value of NOTCH1-

mRNA expression with regard to adjuvant chemotherapy

HR+ HER2n=315

Not selected for this analysis n=656 Sample cohort for analysis of Notch signalling n=414 HER2+, any HR **TNBC** n=34

Total cohort

n=1,270

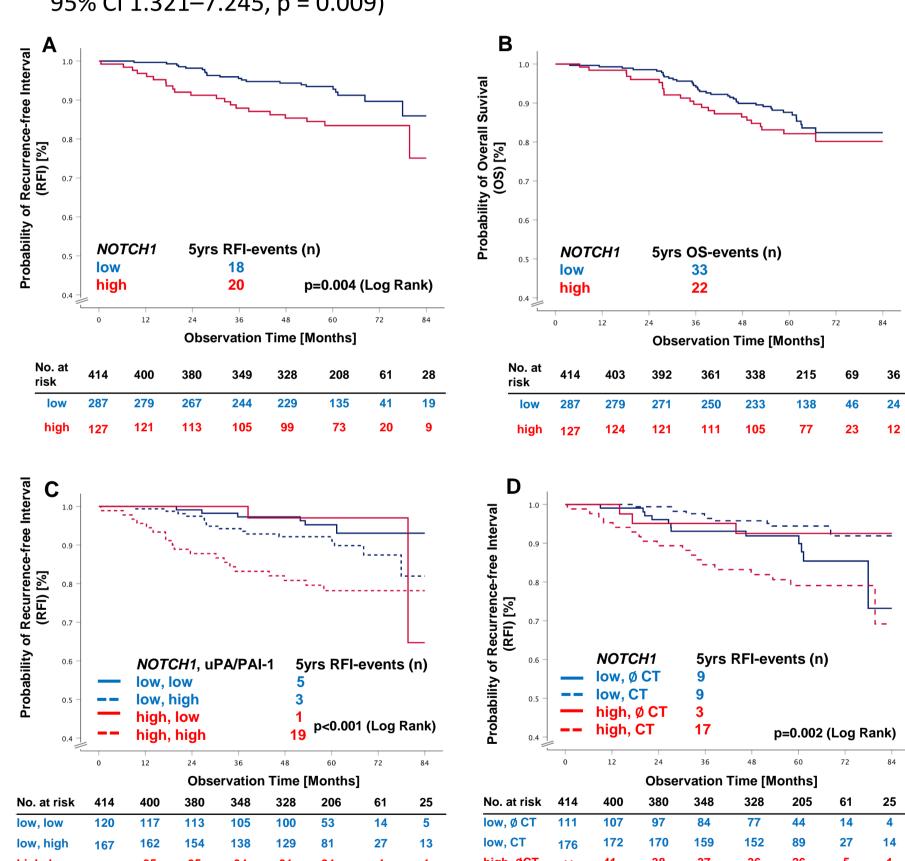
Primary surgery

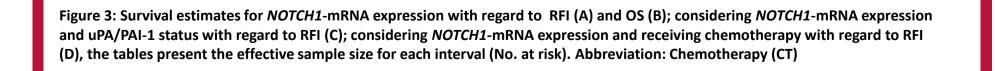
n=1,070

Figure 2: Consort diagram. Patients of the PiA-cohort (n = 1,270) and groups used for multivariate NOTCH1-mRNA expression analysis (n = 414).

Table 1: Distribution of low and high NOTCH1-mRNA expression in selected groups.

gioups.	Notch-cohort NOTCH1-mRNA low		<i>NOTCH1-mRNA</i> high
	n=414 (100%)	n=287 (69.3%)	n=127 (30.7%)
Age			
< 50 yrs	104 (25.1%)	77 (26.8%)	27 (21.3%)
≥ 50 yrs	310 (73.2%)	210 (73.2%)	100 (78.7%)
Nodal status			
Negative	251 (60.6%)	175 (61.0%)	76 (59.8%)
Positive	163 (39.4%)	112 (39.0%)	51 (40.2%)
Tumour histology			
Ductal (NST)	329 (79.5%)	220 (76.7%)	109 (85.8%)
Lobular	67 (16.2%)	52 (18.1%)	15 (11.8%)
Others	18 (4.4%)	15 (5.2%)	3 (2.4%)
Tumour size			
≤ 2cm	198 (47.8%)	130 (45.3%)	68 (53.5%)
> 2cm	216 (52.2%)	157 (54.7%)	59 (46.5%)
Grading			
G1	39 (9.4%)	27 (9.4%)	12 (9.5%)
G2	267 (64.5%)	189 (65.9%)	78 (61.4%)
G3	108 (26.1%)	71 (24.74%)	37 (29.1%)
Hormone receptor status			
Positive (ER and/or PgR ≥ 1%)	357 (86.2%)	256 (89.2%)	101 (79.5%)
Negative (ER and PgR < 1%)	57 (13.8%)	31 (10.8%)	26 (20.5%)
HER2 status			
Positive (DAKO 2 if ISH positive, DAKO 3)	65 (15.7%)	30 (10.5%)	35 (27.6%)
Negative (DAKO 0, 1 or 2 if ISH negative)	349 (84.3%)	257 (89.5%)	92 (72.4%)
uPA/PAI-1 status			
Low: uPA and PAI-1 low	155 (37.4%)	120 (41.8%)	35 (27.6%)
High: uPA and/or PAI-1 high	259 (62.6%)	167 (58.2%)	92 (72.4%)


Abbreviations: estrogen receptor (ER), progesteron receptor (PgR), hormone receptor (HR), human epidermal growth factor receptor 2 (HER2), urokinase-type plasminogen activator (uPA), cut off ≥3 ng/mg total protein, plasminogen activator inhibitor type 1 (PAI-1) cut off ≥14 ng/mg total protein, bold: p-value (Pearson x2 test) < 0.05


Results I

- High NOTCH1-mRNA expression was detected in one-third of the tumours
- Significant prognostic impact of high NOTCH1-mRNA expression with regard to RFI (adjusted hazard ratio 2.1, 95% CI 1.077–4.118)
- Combination of NOTCH1-mRNA expression and uPA/PAI-1: highest risk of recurrences and poorest overall survival for the patient group with high NOTCH1-mRNA expression combined with high uPA/PAI-1.

Results II

Patients with high NOTCH1-mRNA expression and chemotherapy (n = 86) had a worse clinical outcome (adjusted hazard ratio of 3.1 for disease-related events, 95% CI 1.321–7.245, p = 0.009)

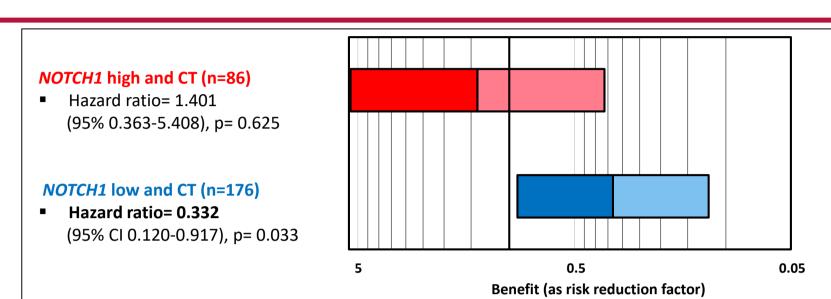


Figure 4: Benefit of chemotherapy visualised in a stacked bar graph expression. Abbreviations: chemotherapy (CT), confidence interval (CI)

Table 2: Multivariate analysis of NOTCH1-mRNA expression (n = 414).

Parameters	sample size	Multivariate analysis RFI		
	n = 414	events	Hazard Ratio	95% CI
ALLa				
NOTCH1 low	287	18	1	
NOTCH1 high	127	20	2.10	1.077-4.118
ALL with regard to NOTCH1 and uPA/PA	AI-1 ^b			
NOTCH1 low, uPA/PAI-1 low	120	5	1	
NOTCH1 high, uPA/PAI-1 high	92	19	3.68	1.452-9.334
ALL with regard to CT ^c				
NOTCH1 low, no CT	111	9	2.85	1.103-7.388
NOTCH1 low, CT	176	9	1	
NOTCH1 high, no CT	41	3	2.33	0.617-8.828
NOTCH1 high, CT	86	17	3.09	1.321-7.245

 $^{
m a}$ adjusted NOTCH1-mRNA expression to: nodal status and histopathological groups, $^{
m b}$ adjusted NOTCH1-mRNA expression to: uPA/PAI-1, nodal status and grading, cadjusted NOTCH1-mRNA expression to: nodal status. HR status

Conclusion

In summary, in our cohort for NOTCH1 we showed a prognostic and, particularly, a significant predictive impact of NOCTH1-mRNA expression. We observed that tumours with high NOTCH1-mRNA expression seem to be less sensitive to cytotoxic treatment. Therefore, we postulate, that downregulation of the Notch-signalling pathway, e.g. with y-secretase inhibitors, may improve the efficacy of breast cancer therapy by restoring chemosensitivity.

References

¹Chimento A, D'Amico M, Pezzi V et al. (2022) Notch Signaling in Breast Tumor Microenvironment as Mediator of Drug Resistance. International journal of molecular sciences 23(11). doi: 10.3390/ijms23116296

²Giuli MV, Mancusi A, Giuliani E, Screpanti I, Checquolo S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. Cancer Drug Resist. 2021 Aug 5;4(4):805-836. doi: 10.20517/cdr.2021.53

Contact