

FPN: 313P

¹Department of Gynaecology, Martin Luther University Halle-Wittenberg, Halle (Saale); ³Department of Obstetrics and Gynaecology, Nathanstift, Klinikum Fürth; ⁴Gynäkologisch-Onkologische Praxis, Hildesheim; ⁵Department of Gynaecology, Hospital St. Elisabeth and St. Barbara, Halle (Saale); ⁶Department of Gynaecology, St. Bernward Hospital, Hildesheim; ⁸Department of Gynaecology, Asklepios Hospital Goslar; ⁹Present Address: Department of Gynaecology, and Obstretics, Hospital Wolfenbüttel; ¹⁰Institute of Pathology, Hospital Fürth, Fürth; ¹¹ Present Address: Gemeinschaftspraxis Amberg, Halle (Saale); ¹⁴Institute of Epidemiology, Biometry and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale); ¹³Institute of Pathology, Biometry and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale); ¹⁴Institute of Pathology, Biometry and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale); ¹⁴Institute of Pathology, Biometry and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale); all in Germany, in behalf of the PiA-study group

Background

As the most common cancer worldwide breast cancer (BC) is a heterogeneous disease with regard to diagnosis, therapy and survival. The diversity of respect to molecular alterations, cellular composition and clinical outcome creates a challenge in developing tumour classifications that are clinically useful to prognosis or prediction. Complementary to the traditional histopathological classifications of the tumours, molecular biological tests specify individualised therapy recommendations (1,2).

Table 1: Classification of intrinsic subtypes (3)

	Luminal A	Luminal B	HER2-enriched	Basal-like
Estrogen receptor positive	90%	98%	38%	8%
Progesterone receptor positive	89%	82%	20%	7%
HER2 positive	14%	24%	72%	7%

Aim of the Study

Our aim was to classify tumours into intrinsic subtypes and to analyse the association of these subtypes with disease progression.

Patients and Methods

- Prospective, multicenter cohort of 1,270 breast cancer patients (PiA, Prognostic Assessment in Routine application, NCT 01592825)
- RNA expression evaluation by: nCounter[®] (NanoString), GenChip[™] HG U133 Plus 2.0 (Affymetrix) or BioMark[™] (Fluidigm)
- Intrinsic subtyping by PAM50 Bioclassifier (4)

Figure 1: Enrollment of the PiA-cohort (n=1,269) and classification into histopathological subgroups

Table 2: Classification of intrinsic subtypes and histopathological subgroups (5)

Intrinsic subtypes	Luminal A	Luminal B		HER2-enriched	Basal-like
Histopathological subgroups	Luminal A-like	Luminal B-like, HER2-negative Luminal B-like, HER2-positive HER2-p		HER2-positive, non-luminal	TNBC
	ER+	ER+	ER+	ER-	ER-
	PgR+/-	PgR+/-	PgR+/-	PgR- (<10%)	PgR- (<10%)
	HER2-	HER2-	HER2+	HER2+	HER2-
	G1, G2	G3	G1, G2, G3	G1, G2, G3	G1, G2, G3
Therapy	Endocrine	Endocrine & Chemo	Endocrine, Chemo & Anti-HER2	Chemo & Anti-HER2	Chemo

Abbreviations: ER= estrogenreceptor, PgR= progesteronreceptor, G= grading, HER2= human epithelial growth factor receptor 2

ER or PgR positive: ≥ 1%; HER2 positive: DAKO 2+ and ISH+, DAKO 3+

Primary Objectives

- Distribution of intrinsic subtypes
- histopathological subgroups

Secondary Objectives

and overall survival (OS) OS: any death

Results

Parameters

shown in table 2.

Table 2: Distribution of intrinsic subtypes

ge at time of diagnosis
50
50
odal status
egative
ositive
istological types
ST
on-NST
umour size
2cm
2cm
umour differentiation
1 and G2
3
istopathological subgroups
uminal A-like
uminal B-like, HER2-neg.
uminal B-like, HER2-pos.
ER2-pos., non-luminal
NBC

References

Intrinsic subtypes in a cohort of early breast cancer patients

Theresa Bracht¹, Rebekka Spiller¹, Marcus Bauer², Sandy Kaufhold¹, Volker Hanf³, Christoph Uleer⁴, Tilmann Lantzsch⁵, Susanne Peschel⁶, Jutta John⁷, Marleen Pöhler^{8,9}, Edith Weigert^{10,11}, Karl-Friedrich-Bürrig¹², Jörg Buchmann¹³, Eva Johanna Kantelhardt^{1,14}, Christoph Thomssen¹ and Martina Vetter¹

Associations of intrinsic subtypes with clinical and histopathological parameters, including

Association of intrinsic subtypes and histopathologic subgroups with recurrence-free interval (RFI)

RFI: local recurrence, distant metastases, death from breast cancer

- univariate and multivariate Cox regression analysis - median follow-up time: 62 months (6-126)

A significant correlation was observed between intrinsic subtypes and each selected parameter

HER2-enriched Basal-like All Luminal A Luminal B n=256 (23.93%) n=154 (14.39%) n=180 (16.82%) n=1.070 (100.00%) n=480 (44.86%) (20.31%) (33.12%) (35.56%) 275 (25.70%) (22.50%)372 (77.50%) 204 (79.69%) 103 116 (64.44%) (74.30%) (66.88%) 331 (68.96%) 145 (56.64%) (52.60%) 104 (57.78%) 81 149 (31.04%) 111 (43.36%) 73 (47.40%) (38.22%) 76 (42.22%) (81.21%) 365 (76.04%) 217 (84.77%) 134 (87.01%) 153 (85.00%) 869 201 (18.79%) 115 (23.96%) 39 (15.23%) 20 (12.99%) 27 (15.00%) 544 (50.84%) 309 **(64.38%)** 97 (37.89%) 65 (42.21%) 73 (40.56%) (49.16%) | 171 (35.63%) | 159 (62.11%) | 89 (57.79%) | 107 (59.44%) 526 453 **(94.38%)** 191 (74.61%) 90 (58.44%) 79 (43.89%) 813 (75.98%) 257 27 (5.63%) 65 (25.39%) 64 (41.56%) 101 (56.11%) (24.02%) **(88.33%)** 178 (69.53%) 34 (22.08%) 27 (15.00%) 663 (61.96%) 424 55 (21.48%) | 19 (12.34%) | 19 (10.56%) (10.93%) 24 (5.00%) 27 (5.63%) 22 (8.59%) 51 (33.12%) 8 (4.44%) 108 (10.09%) 55 (5.14%) 1 (0.21%) - - 38 (24.68%) 16 (8.89%) 127 (11.87%) 4 (0.83%) 1 (0.39%) 12 (7.79%) 110 **(61.11%)**

(1) Perou CM. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-752

(2) Sørlie T. Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer. 2004;40(18):2667-2675.

(3) https://www.nature.com/documents/nrclinonc_posters_breastcancer.pdf

(4) Parker JS. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160-1167.

(5) Minckwitz G et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 2012; 30:1796-1804.

Medizinische Fakultät der Martin-Luther-Universität Halle-Wittenberg

- Patients with a Luminal A tumour (Fig. 2A) had less disease-related events (2.8%) than patients with a Luminal A-like tumour (5.8%) (Fig.
- Only 5.6% of the patients with a Luminal A tumour (Fig. 2C) died compared to 8% of the patients with a Luminal A-like tumour (Fig

		Recurrence-free Interval (RFI), 5 years			
		Multivariate analysis			
Parameters	sample size n=1,070	events n=101	Hazard Ratio	95% KI	
Intrinsic subtypes					
Luminal A	480	12	1		
Luminal B	256	30	3.88	1.959-7.691	
HER2-enriched	154	24	4.71	2.306-9.628	
Basal-like	180	35	6.74	3.358-13.532	
Histopathological subgroups					
Luminal A-like	663	35	1		
Luminal B-like, HER2-neg.	117	13	1.79	0.947-3.392	
Luminal B-like, HER2-pos.	108	9	1.29	0.619-2.706	
HER2-pos., non-luminal	55	12	3.62	1.875-7.018	
TNBC	127	32	4.02	2.469-6.562	

adjusted for age, nodal status, tumour size, grading, **adjusted for age, nodal status, tumour size,

- Classification into intrinsic subtypes is a useful tool to identify more
- Classification by histopathological parameters assigns more patients to the low risk group, however, at the cost of more recurrences.
- Prognostic assessment either by PAM50 or by IHC is still valid according to guideline-based adjuvant therapy recommendation; nevertheless requesting better treatments for each

This presentation is the intellectual property of the authors. The presenting autho Contact for permission to reprint and/or distribute: theresa.bracht@student.u

group.
Contact or has nothing to declare. ini-halle.de, www.umh.de

